A SIMPLE AND CONVENIENT METHOD FOR PREPARING DI-t-BUTYLSILANES

Hamao WATANABE, Tadashi OHKAWA, Tsutomu MURAOKA, and Yoichiro NAGAI Department of Applied Chemistry, Faculty of Engineering, Gunma University Kiryu, Gunma 376

Silicon functional di- \underline{t} -butylsilanes such as $(\underline{t}$ -Bu) $_2$ SiCl $_2$, $(\underline{t}$ -Bu) $_2$ Si- $(OMe)_2$ and $(\underline{t}-Bu)_2SiH(OMe)$ were conveniently obtained in good yields via $di-\underline{t}$ -butylsilane, $(\underline{t}$ -Bu)₂SiH₂, which can readily be prepared from the reaction of dichlorosilane, H_2SiCl_2 , with \underline{t} -butyllithium.

t-Butylchlorosilanes have recently been shown to be very useful materials in synthetic organic chemistry $^{1-3)}$ However, the reported methods usually furnish only a mixture of products 4,5) Thus, it seems desirable to find a simple and convenient method for preparing $di-\underline{t}$ -butylsilane derivatives, the selective synthesis of which is still unestablished.

With respect to our interest in the utilization of dichlorosilane (H₂SiCl₂), we investigated the synthesis of di-t-butylsilane derivatives from di-t-butylsilane, (t-. Bu) $_2SiH_2$ (II), which can be readily prepared by the reaction of dichlorosilane with \underline{t} butyllithium (Scheme 1 and Table 1).

Scheme 1

H₂SiCl₂
$$\xrightarrow{\underline{t}-BuLi}$$
 H₂Si($\underline{t}-Bu$)₂ $\xrightarrow{CCl_4/PdCl_2}$ Cl₂Si($\underline{t}-Bu$)₂

(II) (III) (III)

| MeOH/RhCl(PPh₃)₃ | MeO) | MeO) | MeO) | HSi($\underline{t}-Bu$)₂

(IV) (V)

The reaction of dichlorosilane with t-butyllithium proceeded quite smoothly to give di-t-butylsilane (II) in high yield (83%). The chlorination of compound (II) with carbon tetrachloride in the presence of palladium chloride catalyst 7) gave the corresponding dichlorosilane (III) in 85% yield.

The dehydrogenative mono-methoxylation $^{8)}$ of di- \underline{t} -butylsilane (II) with methanol catalysed by RhCl(PPh3)39) readily commenced under mild conditions giving only di-tbutylmethoxysilane (IV) (67%). On the other hand, the preparation of di-t-butyldimethoxysilane (V) could be accomplished in 64% yield by reacting di-t-butyldichlorosilane (III) with sodium methoxide in methanol, while an attempted solvolysis of III with

boiling methanol was unsuccessful.

Table 1. Pr	reparation of	di-t-but	ylsilane	derivatives
-------------	---------------	----------	----------	-------------

Run	Reactant	s (mmol)	Catalyst (mol %)	Conditions Temp.(°C); Time(h)	Product ^a and Yield	(%)b
1	(I) <u>t</u> -BuLi	(100) (200)	none	-5; 2.5 and r.t.; 1.5	H ₂ Si(<u>t</u> -Bu) ₂ (II)	83
2	(II) CCl ₄ ^C	(41)	PdCl ₂ (5)	reflux; 45	Cl ₂ Si(<u>t</u> -Bu) ₂ (III)	85
3	(II) MeOH ^d	(20)	RhCl(PPh ₃) ₃ (0.3)	r.t.; 16 and 60; 2	HSi(<u>t</u> -Bu) ₂ OMe	67
4	(III) NaOMe ^e	(20) (40)	none	reflux; 14	$(MeO)_2Si(\underline{t}-Bu)_2(V)$	64

aStructure was established by the usual manner (micro-analysis; IR and NMR spectral data). b Isolated yield by distillation. c Ca. 25 ml. d 7 ml. e In methanol (14 ml).

A preparative example is shown for the formation of di-t-butylsilane (II): di-chlorosilane (H₂SiCl₂) (0.10 mol) was introduced under nitrogen into n-hexane (200 ml) which was cooled at -5 °C. To the dichlorosilane solution was added t-butyllithium (0.20 mol) at -5 °C. The mixture was stirred at -5 °C for 2.5 h and then for 1.5 h at room temperature. Work-up gave di-t-butylsilane (II), bp 128 °C, 12.7 g (83%).

References

- E.J.Corey and A.Venkateswalu, J.Am.Chem.Soc., 94, 6190 (1972); R.F.Newton, D.R. Reynolds, M.A.W.Finch, D.R.Relly, and S.M.Roberts, Tetrahedron Letters, 1979, 3981;
 R.J.Batten, A.J.Dixon, R.J.K.Taylor, and R.F.Newton, Synthesis, 1980, 234.
- 2. H. Hosoda, K. Yamashita, and T. Nambara, Chem. and Ind., 1975, 650.
- 3. M.P.Doyle and C.T.West, J.Org.Chem., 40, 3821 (1975); M.P.Doyle and C.T.West, J.Org. Chem., 40, 3829 (1975); M.P.Doyle and C.T.West, J.Org.Chem., 40, 3835 (1975); M.P. Doyle and C.C.McOsker, J.Org.Chem., 43, 693 (1978); T.J.Barton and C.R.Tully, J. Organometal.Chem., 172, 11 (1979).
- 4. L.J.Tyler, L.H.Sommer, and F.C.Whitmore, J.Amer.Chem.Soc., <u>69</u>, 981 (1947); L.J.Tyler, L.H.Sommer, and F.C.Whitmore, J.Am.Chem.Soc., <u>70</u>, 2876 (1948).
- 5. E.M.Dexheimer and L.Spialter, Tetrahedron Letters, 1975, 1771; M.P.Doyle and C.T. C.T.West, J.Am.Chem.Soc., 97, 3777 (1975); K.Triplett and M.D.Curtis, J.Organometal.Chem., 107, 23 (1976); M.Weidenbruch, H.Pessel, W.Peter, and R.Steichen, J. Organometal.Chem., 141, 9 (1977).
- 6. H. Watanabe, N. Sakurai, K. Watanabe, and Y. Nagai, J. Organometal. Chem., 160, Cl (1978).
- 7. Y.Nagai, H.Matsumoto, T.Yagihara, and K.Morishita, Kogyo Kagaku Zasshi, 71, 1112 (1968).
- 8. I.Ojima, T.Kogure, M.Nihonyanagi, H.Kono, I.Inaba, and Y.Nagai, Chem.Lett., 1973, 501.
- 9. J.A.Obsorn and G.Wilkinson, Inorg.Syn., <u>10</u>, 67 (1967).